Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Biotechnol Adv ; 73: 108374, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729229

RESUMEN

Indigo is a natural dye extensively used in the global textile industry. However, the conventional synthesis of indigo using toxic compounds like aniline, formaldehyde, and hydrogen cyanide has led to environmental pollution and health risks for workers. This method also faces growing economic, sustainability, and environmental challenges. To address these issues, the concept of bio-indigo or indigo biosynthesis has been proposed as an alternative to aniline-based indigo synthesis. Among various enzymes, Flavin-containing Monooxygenases (FMOs) have shown promise in achieving a high yield of bio-indigo. However, the industrialization of indigo biosynthesis still encounters several challenges. This review focuses on the historical development of indigo biosynthesis mediated by FMOs. It highlights several factors that have hindered industrialization, including the use of unsuitable chassis (Escherichia coli), the toxicity of indole, the high cost of the substrate L-tryptophan, the water-insolubility of the product indigo, the requirement of reducing reagents such as sodium dithionite, and the relatively low yield and high cost compared to chemical synthesis. Additionally, this paper summarizes various strategies to enhance the yield of indigo synthesized by FMOs, including redundant sequence deletion, semi-rational design, cheap precursor research, NADPH regeneration, large-scale fermentation, and enhancement of water solubility of indigo.

2.
J Agric Food Chem ; 72(11): 5867-5877, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38446418

RESUMEN

De novo biosynthesis of high-value added food additive p-coumaric acid (p-CA) direct from cellulose/hemicellulose is a more sustainable route compared to the chemical route, considering the abundant cellulose/hemicellulose resources. In this study, a novel factory was constructed for the production of p-CA in Yarrowia lipolytica using cellulose/hemicellulose as the sole carbon source. Based on multicopy integration of the TAL gene and reprogramming the shikimic acid pathway, the engineered strain produced 1035.5 ± 67.8 mg/L p-CA using glucose as a carbon source. The strains with overexpression of cellulases and hemicellulases produced 84.3 ± 2.4 and 65.3 ± 4.6 mg/L p-CA, using cellulose (carboxymethyl-cellulose) or hemicellulose (xylan from bagasse) as the carbon source, respectively. This research demonstrated the feasibility of conversion of cost-effective cellulose/hemicellulose into a value-added product and provided a sustainable cellulolytic cell factory for the utilization of cellulose/hemicellulose.


Asunto(s)
Ácidos Cumáricos , Polisacáridos , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Ingeniería Metabólica , Celulosa/metabolismo , Carbono/metabolismo
3.
Heliyon ; 10(6): e28163, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545162

RESUMEN

Background: Current research on amniotic fluid (AF) microbiota yields contradictory data, necessitating an accurate, comprehensive, and scientifically rigorous evaluation. Objective: This study aimed to characterise the microbial features of AF and explore the correlation between microbial information and clinical parameters. Methods: 76 AF samples were collected in this prospective cohort study. Fourteen samples were utilised to establish the nanopore metagenomic sequencing methodology, whereas the remaining 62 samples underwent a final statistical analysis along with clinical information. Negative controls included the operating room environment (OE), surgical instruments (SI), and laboratory experimental processes (EP) to elucidate the background contamination at each step. Simultaneously, levels of five cytokines (IL-1ß, IL-6, IL-8, TNF-α, MMP-8) in AF were assessed. Results: Among the 62 AF samples, microbial analysis identified seven without microbes and 55 with low microbial diversity and abundance. No significant clinical differences were observed between AF samples with and without microbes. The correlation between microbes and clinical parameters in AF with normal chromosomal structure revealed noteworthy findings. In particular, the third trimester exhibited richer microbial diversity. Pseudomonas demonstrated higher detection rates and relative abundance in the second trimester and Preterm Birth (PTB) groups. S. yanoikuyae in the PTB group exhibited elevated detection frequencies and relative abundance. Notably, Pseudomonas negatively correlated with activated partial thromboplastin time (APTT) (r = -0.329, P = 0.016), while Staphylococcus showed positive correlations with APTT (r = 0.395, P = 0.003). Furthermore, Staphylococcus negatively correlated with birth weight (r = -0.297, P = 0.034). Conclusion: Most AF samples exhibited low microbial diversity and abundance. Certain microbes in AF may correlate with clinical parameters such as gestational age and PTB. However, these associations require further investigation. It is essential to expand the sample size and undertake more comprehensive research to elucidate the clinical implications of microbial presence in AF.

4.
Biotechnol Biofuels Bioprod ; 17(1): 33, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402206

RESUMEN

BACKGROUND: Biodiesel, an emerging sustainable and renewable clean energy, has garnered considerable attention as an alternative to fossil fuels. Although lipases are promising catalysts for biodiesel production, their efficiency in industrial-scale application still requires improvement. RESULTS: In this study, a novel strategy for multi-site mutagenesis in the binding pocket was developed via FuncLib (for mutant enzyme design) and Rosetta Cartesian_ddg (for free energy calculation) to improve the reaction rate and yield of lipase-catalyzed biodiesel production. Thermomyces lanuginosus lipase (TLL) with high activity and thermostability was obtained using the Pichia pastoris expression system. The specific activities of the mutants M11 and M21 (each with 5 and 4 mutations) were 1.50- and 3.10-fold higher, respectively, than those of the wild-type (wt-TLL). Their corresponding melting temperature profiles increased by 10.53 and 6.01 °C, [Formula: see text] (the temperature at which the activity is reduced to 50% after 15 min incubation) increased from 60.88 to 68.46 °C and 66.30 °C, and the optimum temperatures shifted from 45 to 50 °C. After incubation in 60% methanol for 1 h, the mutants M11 and M21 retained more than 60% activity, and 45% higher activity than that of wt-TLL. Molecular dynamics simulations indicated that the increase in thermostability could be explained by reduced atomic fluctuation, and the improved catalytic properties were attributed to a reduced binding free energy and newly formed hydrophobic interaction. Yields of biodiesel production catalyzed by mutants M11 and M21 for 48 h at an elevated temperature (50 °C) were 94.03% and 98.56%, respectively, markedly higher than that of the wt-TLL (88.56%) at its optimal temperature (45 °C) by transesterification of soybean oil. CONCLUSIONS: An integrating strategy was first adopted to realize the co-evolution of catalytic efficiency and thermostability of lipase. Two promising mutants M11 and M21 with excellent properties exhibited great potential for practical applications for in biodiesel production.

5.
Int J Biol Macromol ; 253(Pt 5): 127125, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37776922

RESUMEN

Biomaterials with excellent biocompatibility, mechanical performance, and self-recovery properties are urgently needed for tissue regeneration. Inspired by barnacle cement and spider silk, we genetically designed and overexpressed a fused protein (cp19k-MaSp1) composed of Megabalanus rosa (cp19k) and Nephila clavata dragline silk protein (MaSp1) in Pichia pastoris. The recombinant cp19k-MaSp1 exhibited enhanced adhesion capability beyond those of the individual proteins in both aqueous and non-aqueous conditions. cp19k-MaSp1 protein fiber scaffolds prepared through electrospinning have adequate hydrophilicity compared to cp19k and MaSp1 protein fiber scaffolds, and offer improved overall porosity compared to MaSp1 protein fiber scaffolds. The cp19k-MaSp1 protein fiber scaffolds showed excellent proteolytically stable properties because of only 9.6 % depletion after incubation in a biodegradation solution for 56 d. The cp19k-MaSp1 protein fiber scaffolds present remarkably high extreme tensile strength (112.7 ± 11.6 MPa) and superior ductility (438.4 ± 43.9 %) compared with cp19k (34.4 ± 8.1 MPa, 115.4 ± 32.7 %) and MaSp1 protein fiber scaffolds (65.8 ± 9.3 MPa, 409.6 ± 23.1 %), also 68.4 % of tensile strength was recovered by incubation in K+ buffer after multiple stretches, which create a favorable cell adhesion, growth, and proliferation environment for human umbilical vein endothelial cells (HUVECs). The improved biocompatibility, extensive adhesion, mechanical strength, and self-recovery properties make the bioinspired synthetic cp19k-MaSp1 a potential candidate for biomedical tissue reconstruction.


Asunto(s)
Fibroínas , Arañas , Thoracica , Animales , Humanos , Células Endoteliales , Seda
6.
Acta Biomater ; 168: 440-457, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37479159

RESUMEN

Cosmetics for perming hair are commonly used but have negative impacts on hair fibers. Repairing damaged hair with conditioners, hair oil, and hair masks can provide relief but cannot prevent injuries. Recent research has shown that proteins and amino acids can remodel hair's disulfide bonds. However, the permeation ability of proteins is limited, and amino acids may disrupt the secondary structure of hair keratins. Our study demonstrates that peptides can be safely, efficiently, and promisingly used for hair perming. A bioinspired peptide, PepACS (PepA-PepC-SPB), was designed through bioinformatics. It can interact with keratin's sulfhydryl group in situ to remodel disulfide bonds without affecting hair fiber's tensile properties. The potential of PepACS to repair cuticle injuries is also observed through scanning electron microscope visualization. Besides, linking PepACS with mCherry enables hair dyeing. This research suggests that biomaterials can be applied in the hair care industry. STATEMENT OF SIGNIFICANCE: Chemical perming products can have negative impacts on people's health and hair fibers, making it essential to explore alternative methods. Peptides treatment is a promising option, but synthesizing sulfur-rich short peptides for hair perming has not been demonstrated before. In this paper, we utilized bioinformatics to design bio-inspired peptides that can interact with hair keratins and form curled shapes. Our study demonstrates that bioinformatics tools can be utilized to design bioinspired peptides with unique functions. Sulfur-rich short peptides can be heterologously expressed with fusion strategies, and PepACS can securely bind hair fibers through disulfide bonds. Importantly, perming hair with 0.01% PepACS maintains the mechanical properties of hair, and dyeing hair with the fusion protein PepACS_mCh can be facilitated by ethanol. These findings suggest that the strategy of perming and dyeing hair through peptides is non-injurious, and the peptides used for repairing hair damage show tremendous potential.


Asunto(s)
Tinturas para el Cabello , Queratinas Específicas del Pelo , Humanos , Queratinas Específicas del Pelo/análisis , Queratinas Específicas del Pelo/metabolismo , Tinturas para el Cabello/análisis , Tinturas para el Cabello/química , Tinturas para el Cabello/metabolismo , Proteínas/metabolismo , Péptidos/metabolismo , Aminoácidos/análisis , Cabello/química , Disulfuros/metabolismo
7.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239928

RESUMEN

Innovations in biocatalysts provide great prospects for intolerant environments or novel reactions. Due to the limited catalytic capacity and the long-term and labor-intensive characteristics of mining enzymes with the desired functions, de novo enzyme design was developed to obtain industrial application candidates in a rapid and convenient way. Here, based on the catalytic mechanisms and the known structures of proteins, we proposed a computational protein design strategy combining de novo enzyme design and laboratory-directed evolution. Starting with the theozyme constructed using a quantum-mechanical approach, the theoretical enzyme-skeleton combinations were assembled and optimized via the Rosetta "inside-out" protocol. A small number of designed sequences were experimentally screened using SDS-PAGE, mass spectrometry and a qualitative activity assay in which the designed enzyme 1a8uD1 exhibited a measurable hydrolysis activity of 24.25 ± 0.57 U/g towards p-nitrophenyl octanoate. To improve the activity of the designed enzyme, molecular dynamics simulations and the RosettaDesign application were utilized to further optimize the substrate binding mode and amino acid sequence, thus keeping the residues of theozyme intact. The redesigned lipase 1a8uD1-M8 displayed enhanced hydrolysis activity towards p-nitrophenyl octanoate-3.34 times higher than that of 1a8uD1. Meanwhile, the natural skeleton protein (PDB entry 1a8u) did not display any hydrolysis activity, confirming that the hydrolysis abilities of the designed 1a8uD1 and the redesigned 1a8uD1-M8 were devised from scratch. More importantly, the designed 1a8uD1-M8 was also able to hydrolyze the natural middle-chained substrate (glycerol trioctanoate), for which the activity was 27.67 ± 0.69 U/g. This study indicates that the strategy employed here has great potential to generate novel enzymes exhibiting the desired reactions.


Asunto(s)
Caprilatos , Lipasa , Lipasa/metabolismo , Hidrólisis , Proteínas , Ácidos Grasos , Especificidad por Sustrato , Ésteres
8.
Int J Mol Sci ; 24(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37240270

RESUMEN

The search for and characterization of new lipases with excellent properties has always been urgent and is of great importance to meet industrial needs. In this study, a new lipase, lipB, from Pseudomonas fluorescens SBW25, belonging to the lipase subfamily I.3, was cloned and expressed in Bacillus subtilis WB800N. Enzymatic properties studies of recombinant LipB found that it exhibited the highest activity towards p-nitrophenyl caprylate at 40 °C and pH 8.0, retaining 73% of its original activity after incubation at 70 °C for 6 h. In addition, Ca2+, Mg2+, and Ba2+ strongly enhanced the activity of LipB, while Cu2+, Zn2+, Mn2+, and CTAB showed an inhibiting effect. The LipB also displayed noticeable tolerance to organic solvents, especially acetonitrile, isopropanol, acetone, and DMSO. Moreover, LipB was applied to the enrichment of polyunsaturated fatty acids from fish oil. After hydrolyzing for 24 h, it could increase the contents of polyunsaturated fatty acids from 43.16% to 72.18%, consisting of 5.75% eicosapentaenoic acid, 19.57% docosapentaenoic acid, and 46.86% docosahexaenoic acid, respectively. The properties of LipB render it great potential in industrial applications, especially in health food production.


Asunto(s)
Lipasa , Pseudomonas fluorescens , Lipasa/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Ácidos Grasos Insaturados , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Estabilidad de Enzimas
9.
Biomolecules ; 13(2)2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36830769

RESUMEN

The CRISPR-Cas system is an adaptive immune system for many bacteria and archaea to defend against foreign nucleic acid invasion, and this system is conserved in the genome of M. tuberculosis (Mtb). Although the CRISPR-Cas system-mediated immune defense mechanism has been revealed in Mtb, the regulation of cas gene expression is poorly understood. In this study, we identified a transcription factor, CasR (CRISPR-associated protein repressor, encoded by Rv1776c), and it could bind to the upstream DNA sequence of the CRISPR-Cas gene cluster and regulate the expression of cas genes. EMSA and ChIP assays confirmed that CasR could interact with the upstream sequence of the csm6 promoter, both in vivo and in vitro. Furthermore, DNA footprinting assay revealed that CasR recognized a 20 bp palindromic sequence motif and negatively regulated the expression of csm6. In conclusion, our research elucidates the regulatory effect of CasR on the expression of CRISPR-associated genes in mycobacteria, thus providing insight into gene expression regulation of the CRISPR-Cas system.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Archaea/genética , Sistemas CRISPR-Cas , Factores de Transcripción/metabolismo
10.
J Fungi (Basel) ; 9(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36836363

RESUMEN

Copper is an essential element that maintains yeast physiological function at low concentrations, but is toxic in excess. This study reported that Cu(II) significantly promoted the yeast-to-hypha transition of Yarrowia lipolytica in dose-dependent manner. Strikingly, the intracellular Cu(II) accumulation was drastically reduced upon hyphae formation. Moreover, we investigated the effect of Cu(II) on the physiological function of Y. lipolytica during the dimorphic transition and found that cellular viability and thermomyces lanuginosus lipase (TLL) were both influenced by the Cu(II)-induced yeast-to-hypha transition. Overall, hyphal cells survived better than yeast-form cells with copper ions. Furthermore, transcriptional analysis of the Cu(II)-induced Y. lipolytica before and after hyphae formation revealed a transition state between them. The results showed multiple differentially expressed genes (DEGs) were turned over between the yeast-to-transition and the transition-to-hyphae processes. Furthermore, gene set enrichment analysis (GSEA) identified that multiple KEGG pathways, including signaling, ion transport, carbon and lipid metabolism, ribosomal, and other biological processes, were highly involved in the dimorphic transition. Importantly, overexpression screening of more than thirty DEGs further found four novel genes, which are encoded by YALI1_B07500g, YALI1_C12900g, YALI1_E04033g, and YALI1_F29317g, were essential regulators in Cu-induced dimorphic transition. Overexpression of each of them will turn on the yeast-to-hypha transition without Cu(II) induction. Taken together, these results provide new insight to explore further the regulatory mechanism of dimorphic transition in Y. lipolytica.

11.
Appl Environ Microbiol ; 89(1): e0187822, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602359

RESUMEN

Rhizopus oryzae lipase (ROL) is one of the most important enzymes used in the food, biofuel, and pharmaceutical industries. However, the highly demanding conditions of industrial processes can reduce its stability and activity. To seek a feasible method to improve both the catalytic activity and the thermostability of this lipase, first, the structure of ROL was divided into catalytic and noncatalytic regions by identifying critical amino acids in the crevice-like binding pocket. Second, a mutant screening library aimed at improvement of ROL catalytic performance by virtual saturation mutagenesis of residues in the catalytic region was constructed based on Rosetta's Cartesian_ddg protocol. A double mutant, E265V/S267W (with an E-to-V change at residue 265 and an S-to-W change at residue 267), with markedly improved catalytic activity toward diverse chain-length fatty acid esters was identified. Then, computational design of disulfide bonds was conducted for the noncatalytic amino acids of E265V/S267W, and two potential disulfide bonds, S61C-S115C and E190C-E238C, were identified as candidates. Experimental data validated that the variant E265V/S267W/S61C-S115C/E190C-E238C had superior stability, with an increase of 8.5°C in the melting temperature and a half-life of 31.7 min at 60°C, 4.2-fold longer than that of the wild-type enzyme. Moreover, the variant improved the lipase activity toward five 4-nitrophenyl esters by 1.5 to 3.8 times, exhibiting a potential to modify the catalytic efficiency. IMPORTANCE Rhizopus oryzae lipase (ROL) is very attractive in biotechnology and industry as a safe and environmentally friendly biocatalyst. Functional expression of ROL in Escherichia coli facilitates effective high-throughput screening for positive variants. This work highlights a method to improve both selectivity and thermostability based on a combination of virtual saturation mutagenesis in the substrate pocket and disulfide bond prediction in the noncatalytic region. Using the method, ROL thermostability and activity to diverse 4-nitrophenyl esters could be substantially improved. The strategy of rational introduction of multiple mutations in different functional domains of the enzyme is a great prospect in the modification of biocatalysts.


Asunto(s)
Lipasa , Rhizopus oryzae , Rhizopus oryzae/metabolismo , Lipasa/metabolismo , Rhizopus/genética , Rhizopus/metabolismo , Mutagénesis , Aminoácidos/genética , Disulfuros/química , Estabilidad de Enzimas
12.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430193

RESUMEN

In nature, DNA is ubiquitous, existing not only inside but also outside of the cells of organisms. Intracellular DNA (iDNA) plays an essential role in different stages of biological growth, and it is defined as the carrier of genetic information. In addition, extracellular DNA (eDNA) is not enclosed in living cells, accounting for a large proportion of total DNA in the environment. Both the lysis-dependent and lysis-independent pathways are involved in eDNA release, and the released DNA has diverse environmental functions. This review provides an insight into the origin as well as the multiple ecological functions of eDNA. Furthermore, the main research advancements of eDNA in the various ecological environments and the various model microorganisms are summarized. Furthermore, the major methods for eDNA extraction and quantification are evaluated.


Asunto(s)
ADN , ADN Bacteriano/genética , ADN/genética
13.
Materials (Basel) ; 15(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36363345

RESUMEN

Recently, microbially induced carbonate precipitation (MICP) has shown potent potential in the field of civil engineering. The calcium carbonate crystals produced by bacteria during the MICP process play a central role in sticking the soil. However, the morphological changes of calcium carbonate crystals in this process and the mechanical performance of soil in the corresponding stages have not been clearly explored. In this paper, the alterations in the morphology of calcium carbonate crystals were continuously observed via scanning electron microscopy during the MICP process in one week, and the mechanical changes of the samples were monitored every day, so as to reveal the relationship between the morphology of calcium carbonate crystals and the mechanical performance of the samples. The results show that the calcium carbonate crystals undergo a gradual change from ellipsoid to rhombic at the 72nd hour. The mechanical properties of both were greatly improved, among which the compressive strength was increased by 2.78 times compared with the previous time point, and the flexure strength was increased by 2.57 times; this time point was also the time when calcite appears. In addition, we found direct evidence on the first day that bacteria act as the nucleation site of calcium carbonate formation. The above findings have certain guiding significance for the in-depth understanding of the internal microscopic changes of MICP and the influence of calcium carbonate morphology on sample mechanics.

14.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293150

RESUMEN

Sustainable renewable polymer foam used as a lightweight porous skeleton for microwave absorption is a novel strategy that can effectively solve the problems of the large surface density, high additive amount, and narrow absorbing band of absorbing materials. In this article, novel renewable microwave-absorbing foams were prepared using Sapiumse biferum kernel oil-based polyurethane foam (BPUF) as porous matrix and Fe3O4-nanoparticles as magnetic absorbents. The microstructure and the microwave absorption performance, the structural effects on the properties, and electromagnetic mechanism of the magnetic BPUF (mBPUF) were systematically characterized and analyzed. The results show that the mBPUF displayed a porous hierarchical structure and was multi-interfacial, which provided a skeleton and matching layer for the Fe3O4 nanoparticles. The effective reflection loss (RL ≤ -10 dB) frequency of the mBPUF was from 4.16 GHz to 18 GHz with only 9 wt% content of Fe3O4 nanoparticles at a thickness of 1.5~5 mm. The surface density of the mBPUF coatings was less than 0.5 kg/cm2 at a thickness of 1.8 mm. The lightweight characteristics and broadband absorption were attributed to the porous hierarchical structures and the dielectric combined with the magnetic loss effect. It indicates that the mBPUF is a prospective broadband-absorbing material in the field of lightweight stealth materials.


Asunto(s)
Microondas , Poliuretanos , Estudios Prospectivos , Polímeros
15.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36080706

RESUMEN

Rigid polyurethane foams (RPUFs) as building insulation materials quickly burn and release a lot of heat, smoke, and carbon monoxide, and cause human safety risk and severe environmental pollution. To mitigate these disadvantages, MOF/MWCNTs were fabricated via mixing Cu ions' partly substituted framework of ZIF-67 and MWCNTs, and further calcinated MOF/MWCNTs (C-MOF/MWCTs) was newly generated by calcinating MOF/MWCNTs in air. Then, MOF/MWCNTs and C-MOF/MWCNTs were respectively employed together with a phosphorus-nitrogen-containing reactive flame retardant (TBPBP) to prepare renewable bio-based rigid polyurethane foam, including RPUF-T/MOF/MWCNTs 2 and RPUF-T/C-MOF/MWCNTs 2. The characterization results showed that RPUF-T/C-MOF/MWCNTs 2 had better performance than RPUF-T/MOF/MWCNTs 2 and neat RPUF. Compared to neat RPUF, the compressive strength, limiting oxygen index value, and the mass char residue in cone calorimetry test of RPUF-T/C-MOF/MWCNTs 2, respectively, were increased by 105.93%, 46.35%, and 347.32%; meanwhile, the total heat release rate, total smoke production, total carbon monoxide product, and total carbon dioxide product were reduced by 47.97%, 50.46%, 41.38%, 43.37%, respectively. This study provides a referable method for preparing RPUFs with good physical properties, fire, and smoke safety, which is favorable for human safety and environmental protection as new building insulation materials.

16.
Saudi J Biol Sci ; 29(9): 103398, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35942165

RESUMEN

There is currently an increasing demand for the characterization of endophytic bacteria isolated from different parts of plants (rhizosphere, roots, fruit, leaf) in order to improve the organic agriculture practices. The current research was performed to identify both rhizospheric bacteria isolated from the rhizosphere of Ficus carica in three different sites in the north of Tunisia and endophytic bacteria isolated from dried figs. We then characterized them for a diversity of plant growth-promoting (PGP) activities. A collection of 120 isolates from rhizospheric soil and 9 isolates from dried figs was obtained and purified. 16SrDNA gene amplification of rhizospheric bacteria revealed significant diversity and allowed for the assigning of the isolates to 6 phyla: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Representative strains of the collection (90 strains) were tested for numerous PGP activities and resistance to abiotic stresses. The most common PGP trait for all bacteria from the three regions was siderophore production (62%), followed by cellulase (38%), then protease activity (37%), then by lipases activity (17%) and lastly by solubilization of phosphates (9%). Twenty -three strains that showed most PGP traits were selected, 8 strains presented 12 or more, and 15 strains displayed between 7 and 11 of 17 PGP activities. The majority of the isolates manifested a possible adaptation to abiotic stress and unfavorable environments. PCR-DGGE analysis of soil rhizosphere of the three sites allowed also for the acquisition of a Cluster analysis of rhizospheric bacterial communities. Our current study identified and characterized for the first time in Tunisia rhizospheric and endophytic bacteria from dried fruit of Ficus carica.

17.
J Hazard Mater ; 438: 129561, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35999730

RESUMEN

The traditional mining processes of rare earth elements (REEs) are accompanied by the production of a large number of acid mine drainage rich in REEs. A wide-adaptive, low-cost and environmentally friendly biosorbent is an attractive technology to enrich and recycle REEs from the liquid wastes. To construct a broad-spectrum and efficient biosorbent, a novel REEs-binding protein Lanmodulin (LanM) is successfully displayed on the cell surface of a fungus, Yarrowia lipolytica, for the first time, and the adsorption capacities for various REEs are studied. The LanM-displayed Y. lipolytica shows significantly enhanced adsorption capacities for multiple REEs, achieving the highest reported values of 49.83 ± 2.87 mg Yb /g DCW, 50.38 ± 1.46 mg Tm /g DCW, 49.94 ± 3.61 mg Er /g DCW and 48.72 ± 3.09 mg Tb/g DCW, respectively. Moreover, the LanM-displayed Y. lipolytica possesses a high selectivity for REEs over other common metal cations and excellent suitability under acidic conditions. The kinetics and equilibrium analysis of biosorption processes agree well with the pseudo-first kinetic and Langmuir isotherm model. Based on the FTIR and SEM-EDS analysis, the chelation with phosphate/carboxylate groups dominates the Yb binding in LanM-displayed cells, and LanM enhances the adsorption performances by introducing more binding sites with high selectivity towards a wide range of REEs. Thus, the LanM-displayed Y. lipolytica investigated in this study exhibits prosperous potential for the enriching/removal of REEs from acid mine drainage.


Asunto(s)
Metales de Tierras Raras , Yarrowia , Adsorción , Cinética , Metales de Tierras Raras/metabolismo , Minería , Yarrowia/genética , Yarrowia/metabolismo
18.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683022

RESUMEN

Optogenetics has the advantages of a fast response time, reversibility, and high spatial and temporal resolution, which make it desirable in the metabolic engineering of chassis cells. In this study, a light-induced expression system of Yarrowia lipolytica was constructed, which successfully achieved the synthesis and functional verification of Bleomycin resistance protein (BleoR). The core of the blue light-induced system, the light-responsive element (TF), is constructed based on the blue photosensitive protein EL222 and the transcription activator VP16. The results show that the light-induced sensor based on TF, upstream activation sequence (C120)5, and minimal promoter CYC102 can respond to blue light and initiate the expression of GFPMut3 report gene. With four copies of the responsive promoter and reporter gene assembled, they can produce a 128.5-fold higher fluorescent signal than that under dark conditions after 8 h of induction. The effects of light dose and periodicity on this system were investigated, which proved that the system has good spatial and temporal controllability. On this basis, the light-controlled system was used for the synthesis of BleoR to realize the expression and verification of functional protein. These results demonstrated that this system has the potential for the transcriptional regulation of target genes, construction of large-scale synthetic networks, and overproduction of the desired product.


Asunto(s)
Yarrowia , Genes Reporteros , Ingeniería Metabólica/métodos , Optogenética/métodos , Regiones Promotoras Genéticas , Yarrowia/genética , Yarrowia/metabolismo
19.
Food Chem ; 390: 133171, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35551020

RESUMEN

Nowadays, breast milk is considered as the ideal food for infants owing to the most common oleic acid-palmitic acid-oleic acid (OA-PA-OA) fatty acid distribution of the human milk fat (HMF). This study reports the synthesis of 1,3-dioleoyl-2-palmotoylglycerol (OPO)-rich human milk fat substitutes in a two-step enzymatic acidolysis reaction with Rhizomucor miehei lipase (RML) immobilized on magnetic multi-walled carbon nanotubes(mMWCNTs). The immobilized RML (RML-mMWCNTs) showed better thermal and pH stability, convenient recovery and reusability than the free soluble form. Under optimized reaction conditions (1:8 tripalmitin (PPP)/OA, 10%wt. enzyme, 50 °C, 5 h), PA content at the sn-2 position and OA incorporation at the sn-1,3 positions reached 93.46% and 59.54%, respectively. Comparison tests have also showed that RML-mMWCNTs has better catalytic activity and reusability than the commercial lipase Lipozyme RM IM. The results suggest that RML-mMWCNTs is a promising biocatalyst for the synthesis of OPO-rich TAGs with potential use in infant formulas.


Asunto(s)
Nanotubos de Carbono , Ácido Palmítico , Femenino , Humanos , Lactante , Fórmulas Infantiles/química , Lipasa/metabolismo , Fenómenos Magnéticos , Leche Humana/química , Ácido Oléico/análisis , Ácido Palmítico/análisis , Rhizomucor , Triglicéridos/química
20.
Mater Today Bio ; 14: 100256, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35469253

RESUMEN

In nature, barnacles and bacterial biofilms utilize self-assembly amyloid to achieve strong and robust interface adhesion. However, there is still a lack of sufficient research on the construction of macroscopic adhesives based on amyloid-like nanostructures through reasonable molecular design. Here, we report a genetically programmed self-assembly living-cell bioadhesive inspired by barnacle and curli system. Firstly, the encoding genes of two natural adhesion proteins (CsgA and cp19k) derived from E. coli curli and barnacle cement were fused and expressed as a fundamental building block of the bioadhesive. Utilizing the natural curli system of E. coli, fusion protein can be delivered to cell surface and self-assemble into an amyloid nanofibrous network. Then, the E. coli cells were incorporated into the molecular chain network of xanthan gum (XG) through covalent conjugation to produce a living-cell bioadhesive. The shear adhesive strength of the bioadhesive to the surface of the aluminum sheet reaches 278 â€‹kPa. Benefiting from living cells encapsulated inside, the bioadhesive can self-regenerate with adequate nutrients. This adhesive has low toxicity to organisms, strong resistance to the liquid environment in vivo, easy to pump, exhibiting potential application prospects in biomedical fields such as intestinal soft tissue repair.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...